Problem 1 (answer on page 1 of the booklet)

Find the domain and the range of the function $f(x, y, z)=\frac{1}{\ln \sqrt{4-x^{2}-y^{2}-z^{2}}}$. Determine if the domain of f is an open region, a closed region or neither? Also, determine if the domain is bounded or unbounded. Also, describe the level curves of f. (10 pts)
Problem 2 (answer on page 2 of the booklet)
Find the equations of the tangent plane and normal line to the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the ellipsoid $x^{2}+4 y^{2}+z^{2}=9$ at the point $(1,-1,2) .(16$ pts $)$
Problem 3 (answer on page 3 of the booklet)
Find all local maxima, local minima and saddle points for $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}-8$. (16 pts)
Problem 4 (answer on page 4 of the booklet)
For each of the following limits, say if it exists or no, justifying your answer. ($7+8+8$ pts)
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}} \sin \left(\frac{1}{y}\right)$
b) $\lim _{(x, y) \rightarrow(1,-1)} \frac{x^{2}-y^{2}}{1+x y}$
c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}$

Problem 5 (answer on pages 5 and 6 of the booklet)
Let $\quad x=\ln (r+s), \quad y=\cos ^{-1}\left(\frac{r}{s}\right), \quad z=\sqrt{s-r} \quad$ and $\quad w=\tan \left(\frac{x}{y}\right) e^{y z}$
(i) Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ at $(r, s)=(0,1)$. (7 pts)
(ii) Find the directions of zero change in w at the point $(\mathrm{r}, \mathrm{s})=(0,1)(6 \mathrm{pts})$
(iii) Find a line normal to the surface $w(r, s)=\tan \left(\frac{\ln 2}{2 \pi}\right)$ in the $r s-$ plane. (8 pts) (Hint: you may need the fact that $\cos ^{-1}(1)=2 \pi$)

Problem 6 (answer on the last page of the booklet and its back)
The two parts of the following question are independent.
(i) Let $w=x+y$ where $x=\ln \left(\sec ^{2} \frac{t}{2}\right)$ and $y=\sin t$. Find α such that $\left.\frac{d w}{d t}\right|_{t=\alpha}=1$.(7pts)
(ii) By how much will $f(x, y, z)=\ln \sqrt{x^{2}+y^{2}+z^{2}}$ change if the point $P(x, y, z)$ moves from $P_{0}(3,4,12)$ a distance $d s=0.1$ unit in the direction of $3 \vec{\imath}+6 \vec{\jmath}-2 \vec{k}$? (7 pts)

