Problem 1 (answer on page 1 of the booklet)

Find the domain and the range of the function $f(x, y, z) = \frac{1}{\ln \sqrt{4 - x^2 - y^2 - z^2}}$. Determine if the domain of *f* is

an open region, a closed region or neither? Also, determine if the domain is bounded or unbounded. Also, describe the level curves of f. (10 *pts*)

Problem 2 (answer on page 2 of the booklet)

Find the equations of the tangent plane and normal line to the curve of intersection of the paraboloid $z = x^2 + y^2$ and the ellipsoid $x^2 + 4y^2 + z^2 = 9$ at the point(1, -1,2). (16 *pts*)

Problem 3 (answer on page 3 of the booklet)

Find all local maxima, local minima and saddle points for $f(x, y) = x^3 + y^3 + 3x^2 - 3y^2 - 8$. (16 *pts*) **Problem 4** (*answer on page 4 of the booklet*)

For each of the following limits, say if it exists or no, justifying your answer. (7+8+8 pts)

a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2} \sin(\frac{1}{y})$$
 b) $\lim_{(x,y)\to(1,-1)} \frac{x^2-y^2}{1+xy}$ c) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$

Problem 5 (answer on pages 5 and 6 of the booklet)

Let

 $x = \ln(r+s),$ $y = \cos^{-1}(\frac{r}{s}),$ $z = \sqrt{s-r}$ and $w = \tan\left(\frac{x}{y}\right)e^{yz}$

- (i) Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ at (r, s) = (0, 1). (7 *pts*)
- (ii) Find the directions of zero change in *w* at the point (r,s) = (0,1) (6 pts)
- (iii) Find a line normal to the surface $w(r, s) = \tan(\frac{\ln 2}{2\pi})$ in the rs plane. (8 *pts*) (*Hint: you may need the fact that* $\cos^{-1}(1) = 2\pi$)

Problem 6 (answer on the last page of the booklet and its back)

The two parts of the following question are independent.

- (i) Let w = x + y where $x = \ln(\sec^2 \frac{t}{2})$ and $y = \sin t$. Find α such that $\frac{dw}{dt}\Big|_{t=\alpha} = 1$. (7 *pts*)
- (ii) By how much will $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$ change if the point P(x, y, z) moves from $P_0(3,4,12)$ a distance ds = 0.1 unit in the direction of $3\vec{i} + 6\vec{j} 2\vec{k}$? (7 *pts*)

Good Luck!

K. Yaghi